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THE, MEASUREMENT OF KOK-LINEAR FORCES AND MOMENTS

BY MEANS OF FRFF FLIGHT TESTS

ABSTRACT

It has been observed, that the bebavior of missiles either
moving under the influence cf pop-linear forces and mosents or flyirng
at large angles of yaw i3 frequently well described by curves of the
seme form as those generated by linear force systeps and small a~eles
of yaw. With this ‘n mind an "equivalent" linear solution to the
actual equatione of yawing motion 48 obtained.
This equivalent linear solution bas been used in the analysis
of a wide variety of prograxs fired on ERL's Spark Ranges and considersble
success hx, been experiencei. Excellent internal consistency has ’
been observed in messuring nom-linesr normal and Magnus forces and
their mments and, in all cases where wind tunnel results were available,
they were in good sgreement with range results.
The spplicaticn of this technique to the equally important problem

of predicting yawing xotion is described.

R0 S A T




v - o - a

o

A
& =
8y
B
b =
a
> o
€y € &
F e
¥
n

-
11<P) -
Ji =
Ki -

TN e

TABLE OF SYMROTS#
axial moment of inertia i

2 2

Ko * Koo ;
coefficients in the drug equation (Equaticn (22))

transverse ncment. 9f iuertis
K5 &9
diaseter

unit vectors along axes of fixed-plane co-ordinates

(Fl, Fp, F,) serodyramic force vector
arag force
1ift force s

scceleration due to gravity
-2
HL- JD+k2 (JH' IJM)

oy

‘2 62 dr dq

3

a

& r

E'x 8%, 1 =A, D, DA, P, H, L < MA, N, KA, 8, T :
12ki"::t:-~u:”: H

k=0 3

(Expansion as a function of 52 of serodynamic coefficients

defined in Equations (5 - 10)) l’

*Onlython symbols vhich appear in tha body of ttis report are
listed here. Symbols which are introduced in the appendices appear
close to their definttioms.
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b { = (Ml’ My, MB) aerodynamic moment vector

"y wass
(n,, B, n,) direction cosines of missile's axis with respect to
Dy» Bpe By .

range ce-ordinates

t .
h = J‘ % dt arclength along the trajectory in calibers

("]
Q constants in the swerve equations (Equations (82 -83)) °
q change in center of mass location measured in calibers (Egs.

(99 -100))

[
-2 - * 2k

T - 4, - k, .‘Lr) = ;-:O T, 8
t time
T - (_\)1, upy, u3) velocity vector
u - I'l!l-sgnitude of ihe velccity
u magnitude of the velocity at mid-range '

(xl ’ X, x5) vector in the range co-ordinate system
(yl, Yo y3) vactor in the fixed-plane co-ordinate system

ai exponential damping coefficient of i-frequency
3 = |/ﬂ magnitude of the sine of the total yav sngle
2¢ T . 2¢ ' j
2 . s 2, 2 Kofy " - KB
e Llo 20 ” t o ¢ v
. 1 2
2
8, = xma + X, g Effective squared
yavs
2 2 2
b2 = Ko * g
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& - waximun value of &
8 orientation angle of plane of yaw
+ iu5
A = ).2 + 1).5 - complex yaw
(o, + imﬁ)d
N = ua +iu3 = m dimensionless complex cross angular
velocity
u)ld
v = - diaencic~ <~ . migsile spin
- . A v
v B
A nld
v = - dimensionless co-ordinate system spin
: E?] average value of $
e air density
g, = $,0 + #,' P phase angle of i-frequen:y
¢v - ¢1| - = ¢2|
B, = Fp-0=0-4y
4 = arccos n3 .
? = (nl, 9y, 03) angular velocity vector of co-rrdinste systew
g - (ml, @y, '»3) anguiar velccity vector of missile
d
()= )
(= )
A circumflex superscript with the exception of $ denotes
quantities in the fixed-plane co-ordinate system
~ tilde superscript with the exceptiom of 62 denotes quantities
appearing in the solution of the 1l nearized yaw equation
* asterisk denctes the modificsticn ot ~muentities involving

aerodynamic coefficients through the consideration of the
cosine of the yaw angle, £,
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1. NTRODUCTION

The free flight spark range technique ueassures the serodynamic
forces and moments acting on a missile by means of very accura.e
observations of its motion in flight. This process requires a
kncwledge of the functional dspendence of these forces and moments
on the' dynemic veriables of the motion in order that the soluticn
curveg to the differential equaticns of motion may be cbtained.
These solution curves are fitted to the motion and the forces

and moments calculated from the paremeters of the fit.

This need for solutiomsin closed form has traditionally
limited range tests to motions which are described by linear equations.
Since non-linear terms arise from both the size of the motion {non-
linear geometry terms) uad the presence of z2cond crder or higher
terms in the aerodymanic force expansion (non-linear force terms),
this means that the range t.chnique is restricted +o configurestions
possessing linear force systems and flyiug at small angles of yaw.

Strangely enough, a number of models have been fired iz the BERL

Reapos which elther possessed known non-linearities in their force
systems or flew at large angles of yaw and it was found that their
moiion could be very well fitted hy functions which were solutions

of the linearized equations. This seemed to imply that the parameters
of these linear equaticms should be "zverage values" of the »
coefficients of the parent non-lin2ar equation. It is the purpose

of this report first to derive the equstions which relate these
aversge values to the non-linear force terms and certain characteristics
of tie motion and then to demonstrate the great value of these
relations by applying them to & number of progrems which have been
fired at ERL. The success of this technique more than doubles the
vAalues of free flight ranges for both the ballistician and the
aerodynamicist.

Finally the extensior +his method to the <ven more impurtant
problem of the prediction oo 4 Ing motion 1s duseribed.
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DYGUNMIC CONSIDNRATIONS

In order to invostignte the yawing wmotlon of misslles moving ut
lares ancles of yaw, the eqart equations of motion mucst be derived,
An important feature of this derivation lies in “he proper selection
of the co-ordinate system and the dynamic variaries, This selection
should be w~de oo that the reswltirg equations we as simple as
pocsible and reasonsably compatibles with the basic assumption that thelir
sclution may be approximated by a solution of the linearlized eguationsz,
In other words the non-linear equation must possess the same general
charascteristics o. the linearized equation, i.e., order of equatiorse,

nunber of varisbles, symmetry cof vorishles, etc.

For arbitrary »igid bodies the best co-ordinote cystem is one
whose axes lie along the body's principal axes of inertia. Since the
mass distributions of most missiles are rotationally symmetrical ahout
the longitudinal axis of inertis, all transverse moments of inertias
are assune! to be equal and all axes perpendlcular to the longitudinal
exis are principal axes of inertid, A right-handed Cartesian co-ordinate
system with numbered axes will be constreined so that its l-axis 1is

aligned vith the missilet's longlitudinal axis and polnting forward.

Y
i , the angular velocity vector of the co-ordinate system

relative to 2n inertial system, will have comonents (ﬂl, 5'12, 0})

while the missile's angular velocity vector, 8, will have components

(a;l, @y w)). This definttion of the cu-ordinate system, then, requires
that 32 =a, and 03 - m} Ir Ql and an initial orientation of the 2-
axis are sp2cified, the co-ordinate system would be completely determined.
In Appendix A thLe equations of motion are derived for arbitrary values

of 01 and ve see that these equations would be greatly simplified 1if

ﬂl = 0, For this resson we will make congiderable use of a non-3pinning
co-ordinate system for which the 2-axis initially lies in the horizontal
plene pointing to the left and whose axial spin, nl, i3 {identically zero.

Turning now to the question of dependent variable: it may be seen
that the major contenders are the Eulerian angles and t.'® lirecction
cosines, The question of compatability now appears. Althougu w.2
linearized equations in terms of Fuleriau angles ere symmetric in the

10
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comporants of yaw, the corresponding exact equations cannot be.

This is c¢lear 21wz the definition of the angles. For this renson®

we will cxprere ¢o- equations in terms of direction cosines.

At this point ve must precisely define our variebles. The yaw
angle is defined to be the angle between the miesile's axis and the
terngent to its trajJectory. If the missile's velocity vector, t,
has cozponeats (ul, u,, uj) and magnitude, u, the sine of Lie yaw

2+u;
3

angle is %= and e unit vector lying in the plane of vaw hLas

\u., ‘\lua +u

cousider only those missiles possessing trigonal or greater rotaticnal

direction cosines (0, )+ Since we will

o Y‘a:

symeetry, it will be convenient to represent quantitiec in the plane
normal to the missile's axis by complex nurbers. With this in mind
we define the complex yaw vector, A, 40 be a vector which lies in the
plune of yav and vhose magnitude is tne sine**of the yaw angle.

+ 1u

2 (1)

.

. o A=

u

The cosire of the yew angle will be needed in this report and will be
denoted by £.

N l-;—l- (2)

*
As cen be seen from an examination of Reference 1 the .ulerien
angles also introduce considerable algebraic complexity.

%
In Referenze 2, uy {¢ used as a charscteristic velocity for forming

dimensionless quantities and. hence, the corplex yaw of that re-

ference is proportional to the tungert cf tte ysaw angle. Although
this use of u does aimplify the center of miss relations, it alsc

introduces s number of complicstions which ows cholce of u avoids. .
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In a similar fashion the exisl and transverse component: of the ang‘lar
velocily may be separated and written in complex form.

mld

vr

(awy + 1o,)d (3)

1}

T

where ¢ is diameter.

Finally we will select our independent rcorisble to be distance measu-ed ,
along the trajectory in calibers. If this var.able ls identified by p,

.

p=\ Fa ()

vhert is time.

.'I’hn genera.uzed3 lines™ ex.iif.iu Jf the seroiynamic force and
noment assumes that tbh= ¢ rce and moment. are linear functioms of )\, u, )
and thet.. 4-:Z.utives in a non-rolling :o-ordinate system. For symmetric
“.isi.aes this assumption introduces ej shteen coefficients. If we limit '
ourselves to on”y those coefficients iaving & measurable effect on the ;
motion, this total reduces to ten ar« we have the foliowing expansion.

l‘ln-pdauakm (5)
Py + 1¥, -pd2 [( Ky + WK + 1Kgu - xm(x +1e> ](6)
ll--pd (7)‘; g

' u
LR [( VEp = IR - K =1K, (A + 1) J (6
where (I r,r ) are omponents of the aerodynamic fm'cf..
(g, %, x,) are camponents of the serodynamic mar; ,.,t, 5
p is air densit , :
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For this report we wiil only consider non-linearities caused
by the size of the yaw angle. Since symctryl‘ requires that the
aerodynamic coe®ficlents must be furictions of AN = 82, we will only
consider such a dependency on the square of the sine of the yaw angle.

Two otber force coefficients will be used in this report. These
are based on a resolution of the aerodynsmic force in the bla.ne of yaw
i1%o components along the trajectory and perpendicular to it. Ir FD

it the component along the trajectory and FL the éomponent perpendicuiar

to the trajectory and pointing toward the missilets nose.
22 '
Fp = - pdu” K 5 (9)
22 \
Fp=-pdu K 8 _ »(10
where & = \lﬂ.' (5 1s the magnitude of the sine of the yaw angle. )

In order to obtain relations between these twoc new coefficienfa
and those defined in Equations (5 - 6), we require that the 2-axis
bte in the plane of yaw so that A is real and equal to -8.

;. Fp=8F -8 F, ~ (1)

FLo=8F +4F, , {(12)

Substituting Bqustions (5), (6), (9), and (10) in &u=ttems (11) (12)
and neglecting the &'B and KNA ternms.

13
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Ky = MK, + &° Ky (13)

o= By -t

From Pquations (13) (14) the usual small yaw approximations

(1b)

follow:
(25)

(16)

Ky 2 Kpy
Finally 12 KDA is eliminated from Equations (13-1h4) the following useful
relation results:
SRR
In Appendix A, the exact equations of motion for the aerodynamic
force and moment as defined by Equations (5 - 8) are derived. (Egs,

(A3, A10, Al19)) If the effect of gravity and the variation of spin are
neglected (J = y = D = 0) they may be written in the following form

(1)

in the non-spinning co-ordinate system (¥ = 0)
(18)

wi =0 (19)

A"+ n-{'-ﬁ]v+[.u+u1.v-1‘h] A=0 (20)

P I

where
Badd =3 +k, "I, - 83,,)
L=tk g MA
-gv i
-%
Ta s ~-x"27)"
L% Jr
A 1s axial moment of inertia
B is transverse moment of inertia
‘1 is axial radius of gyratica in calibers

-2

= <l

I

k2 is transverse radius of gyration in calibers

b1




i‘
|
!
;
]

3
pd
- K
m ig mass.
:z SMALL YAWING MOTION WITE NOJ-LINTAR MOMENT AND NO

TAMPING

In this section a verv simple example of non-linear yswing motion
will be considered in some deteil. This is the case of a missile
flying at small yaw and acted on Ly a cubiec overiuraning cr resteoring
moment. Later the effect of other noun-linear feoracs and mowments &s

well as the geometric non-linearities will be considered.

The basic feature of ell the theoretical resuiis of this report ’
is tne assumption that over "small" sections of a missile's trajectory
the non-linesrities present in the equations of motion do not cause
the mction t2 be qualitatively different from motion based on the
linearized equations. For example, the yawing motion of a symmetric
missile acted on by non-linear forces and moments shouid still be
eplcyciic when a "small" portion of the trajectory is considered. The
parameters of the epicycle, however, would pr.lLcoly be related to the
size of the motion. This assumption seems to be reasonable when the
non-linearities are themselves "smell”. The experience of
ballisticians ac based on actual free flight tests have indicated that
relatively long sections of trajectories and large non-lineerities are
8till "small" enough for this assumption.

In order to illustrate this point the data analysis of a non-
linear crag force will be outlined. Since this is the only non-linear
aerodynamic force which up to the present time has been .uccessfuily
handled by ballisticians, this digression will also provide a good
background for later derivations.

The non-linear depencerice of the drag for:e on the magnitude of
the yaw is very well described by the assumption that the drag coefficient
is a quadratic function of & where 5 is the sin: of the total yasw angle.

e = 52 "
K=Ky *Epo )

15




In Reference 5 it s shown that the usunl drag reduction for flat
trajectories* ivvolves the fitting of the time measurements to &
cubic in Ailstance.

t:ao+a.1p+32p2+33p5 (22)

where p 1s measured from the middle of the observed trajectory.

It is further shown there thst under cortain reasonable approximations
the following equation appiies for drag force of the same form as
Equation (21).

tut +3-ps+d g 534» S48 5 1 {(p) (22)
: % uop Uy 0 85 F % D52 1 i
vhere y, 1s velocity at midrange {(p =0),

a3 is a constant related to drug dependence on Mach number,

1, (») -{ §62drdq, and

o © .
3

J. =23

Di nx'ni

It the yaw is well described by an epicycle, then
N 16, 1, (24)
-lle +x23 :
vhere K, = K, e-adp g, =9, +¢,.'p, and
17 "% 3Py =Py *Py®
xm,a,ﬁp, ¢;bmrea.1 constants.

. 2 i(¢l - ¢2) .o 1(¢2 - ¢1)

e 8B ek ek Z kP e KK, (e ) (25)
Although the expirression in parentheses may be given more simply by
2 cos(¢1 - ¢2) , this form will be more coavenient for the non-linear
yav equation. For the cese of zero yaw drag coefficieat, we see, from
Equations (22) and (23), that
2
mn %
5=kp o B

A trajectory is said to be flat when the component of the gravational
force along the trajectory does not change.. The yaw drag treatment may
be extended to treat non-flat trajectories if this is neccssary.

16




When the ysw-cdrag coefflcient ans & reasurable effect , 1t does not f 3

ususlly affect the quality of this cublc fit for segments of trajectories g

! as long as 10,000 calibers. It has been found that in this case the 3
same configuration flying at different aversge yaws will provide good

2s, L

cubic fits but differe :: value: of -52- . The prchblem is then to find g D
1 y

the quadratic contribution of the yaw-drag term of Equation (23).

T Since all drag reductions contain a number of periods of the

cosine term, the cublc fit of the time history effectively neglects
- this coamponent of 52. With this in mind we look for the "best" quadratic

approximation to Il(p) over the length of observed trajectory, L.
~~

T To do this we define an average squared yaw, 52, so that the integral

:

‘ ~s 2 2 ~

» ‘ L) -6 B) | b 1s a mintmm.* &% 1s, therefore, the best
L

-
quadratic coefficient from the standpoint of least syuares. Differentiating
the integral with respect to 8 and setting the result equal to zero. ) |

L
> .
§ p L,(p) ép ,
]
o~ L f
3.z :
T .
B
: S 3" ap
. L
2
i ¥ Fote that this averege squered yaw is different from the more tradition-

L

¢ ally used mean squared yaw ?-é- (Kl2 + K22) dp. Although the average

_ L
2
squared yaw has better theoreticai Jjustification, the numerical difference
is usually not important.

o v —————— - e +

.
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- _‘5_3 { I,{p) ap (21)
5 7L
-2
where Il(p) = | § (K12 + Kéz) dr dg
K
2;' lp-A1+2alp 2e-aa2p_-l+2a2p
T 3 *+ Ko T
: (2)* (2,)

The cmpletel éxpanaion for & msy be computed from the power series
expansion of Ii_(p). Since th‘r’%e non-wero terms are usually sufficient,
the following expression for 8" is easily derivable.

r CRI Ny
8% = 101K, .2 | wiwry + + '
P | 3TE) T RO ho 1) (27)
. (ehF  (at)
+
20 | 3(21) * 7OIT T 9C8T)

Returning to equatisn (26),

~s

- 2% % (28)
= — + .} 28
"D ange 30> 1 0 X .
In most cases a good approximation fer 82 can be obtained by teking
the first term in the expansicn of Eq. (27!).

R e 0t g2 (0 o) 29}
4 range 62 0
The value of this relg,%ion is clearly shown in Figure 1 vhere
KD is plotted versus & Ffor a body of revolution fired st yaw

nnifo’?up to 30°.' A further check ¢n this technique lies in the
goodagreeuntofthevindtmmlv&luotl(naas 1.85 with the free

flight value of 1.82. (See Teble IV on Pagelh5.)
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Free flight testsé have shown that the situation for the yawing
motion is quite similar to this yaw drag case. Although the non-
linearities do not measureably change the nature of the epicyclic
motion which is predicted by the linear Lheory, they do affect the
vuluee of the epicyclis parameters. It is, therefore, necessary
to obtain relaticns of the same type as Eg. (29).

Since the simple case of the small amplitude yewing motion of a
missile acted on by a cubic static moment will first be considered,
Equation (20) can be considersbly simplified. The small amplitude
assumption implies the approximations £ = 1 and £!' = O while the
restriction to a static moment eilminates the terms in H, JI" and T.
The equation under consideration, therefore, becomes

A" < fVAY - (MO + M, az)x = 0 (z0)
S

a
wherel(o-P-B—KMo

5
”a'e%'“naz
= g * B2 &
82 - 7.

The solution to the linearized form of Equation (30) for a
gyroscopiceally steble missile* i3 an epicycle without damping.

A eﬁ; + 1'32
ST Ko © (1)

* A missile is gyroscopically steble {f v 2>h}b. All stetically stable
missiles (M.<0), for example, are gyroscopically steble. Statically

unstable mi siles_.(lb >J) are gyroscopicall;’ stable when their

gyroscopic stability factors, s - %ﬁ ; are greater than unity.
[}
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LIP ¢10, and ¢l are real constanis.
In Equation (31) the K, 8nd P, ) & depend on the initial conditions but
the frequeacies, ‘a: are functions fo the coefficlents of the linearized
equation and are ir.xdapendent of the initial conditions. The well known
relationa for the frequencies are

- v (32)
| 9 T om » (33) |

It will be shown, however, that the frequencies of the quasi-linear
; solution of Equation (30) do de;end on the initial conditions.

f

' If the solution to Equation (30) is assumed to be of the same .
form a8 Equation (31), it can be aubstituted in Equation (30) to
provide the following equation .

1 2 g ,
Ko e ’[-¢12+ '¢1‘"o'"2“102*2“202)]
+Kap -”2[- B+ Ty M- (g 2'&0"‘)] (34)
1(2¢1 - ¢2) + xzo? .1'(2“2 hd ¢1] - 0.

0

P "2[‘102“20 .

* The tilde superscripts are used to emphasize that the 3;': appeax
in the solution to the linearized equation. .
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Since we know that the epicycle is a good description of the actual
motion, the third term in Equation (34) which contains mixed frequencies
is neglected and the following two equations mey be obtained.

By (7 - B]) =4y + 4, 8, (35)
Bo 5 -8 =wy+n, 85, (36)

. 2 2 2
vhere bel - ch + 21%0

82 = Kag + 2
Unfortunately Equations (35 « 36) are both quadratic equations and two
different values of eack frequency are possible, This difficulty,
however, can be resolved. Since we are considering solutions close
tc the splution of the linearized equation, the solution of Equation
(35) close ta'B'l should be selected and similerly for Equation (36).

This means that the larger rooct of Equation (35) and the smaller root
of Bquation {36) should be used.

Equations (35 - 36) shov that 85,, the effective value of the
squared yaw for the i - ¢th frequency, is twice as aensitive to the
anplitude of other frequency as it is to its own smplitude. The effect
comes from the cosine term vhich was caitted from the ysw drag analysis.
For the yawing motion this periodic part of 62 can not be neglected.

In arder to obtain relations similar to Equations (32.- 33), Mo
is first eliminated between Ecuations (35 - 36) and then v 1s eliminsted
between them

2 2
- R ¢£ + ¢; - -V- + Ha (Klo' xfo ) (37)
¢l - ¢2 ‘
By - By = My + ¥y 20 (%)

v a2
s 2 P) 8o - o 8y
-»

° g - %,
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renw

' 2 ' 2
2 2 ¢ K. -8
=K + K+ 71 Ko 2 ¥a0

H ]
=8

At firet glance this derivation of our “equivaient” solution
seems to be surrounded by an atmosphere of expediency and to be
resting on ezpirical assumptions., Actually this is not true. 4s we
shall now show our technique has a good theoretical background and
regquires & minimum algebraic work in comparison with other methods.
Finally 1t will be shown that the technique 1s not reatricted to non-
linearities proportional to 62 but can be easily extended to poiynomial
functions of 82.

The derivation of Equations {35 - 36) may actually be considered
the firat step of an iteration procedure. It ie rertainly reasonable
to assume for small non-linearities that the first step of the iteration
has the same form as the linear solution. The error term,

2 . 1(2¢2 - ¢l)

Mz[&ozxeoe“z”l“’a’ +Eg Koy € ’

introduces mixed frequencies which are a characteristic ¢f a non-linear
equation. The next ctep in the fteration would be to assume a solution
of the form

i 18 129, - 8,) 1(2¢, - 9.

1 2 1 e 2 bl
A= e T+, € + e + K. e

(o]
E 20 » %o (39)

Substitutton of Fquation (39) in Equation (30) would provide four
L}
complicated equations in terms of the four Kio g8 and twe frequencies
]
¢1 s, and our error term would then be of the form

1(3¢, - 28,) (3¢, - 24.) 14, - 38,) 1(bg,-3¢)
!E(Ale 1 2 th e 2 1 +age 1 2 +th e "‘M‘l).
where the Ai are fifth order combirutione of the K o}s. This process .
may then be further iterated to yield a series expinsion of the almost ’
periodic solution of Equation (3C). Fortunately as ve shall see, the
experimental results of this report show that only the first suepy of

this process is needed.




Another method of treating Fquation (30) which may seem to be more
elegant than the metucd of this report is thet of Kryloff and Bogoliuboff.*
It will be shown that Luis method provides the same results es our direct
substitution aopproach and requires more slgehraic work. Xryioff and
Bogoliuboff move the non-linear termes to the right-hand side of the
zquation and plesce the salution of the lirearized equation 3u these
terms 80 that they are funct’ons of the independernt variable p. The

method of variation of parameters is then used to solve tie resulting
inbomogeneous lineer equation. In ord.r to solve the differential
equations for the perametric functions, the terms arising from the
inhomogeneous term of the original equation are averaged over the two
periods of the motion.

As an illustration of this method we rewrite Equation (30) as
- 2
A" - VA - MA o= My 85 A = M, £(p) (ko)
~

4 ¢ ~
2 2y A1 2 . 2 14,
where £(p) = (Km + 2K20 ’Klo e + (K2° + <Klo )K20 e F2
o~ V4 o~
2. 1028, - 6;) 2 1, - )
*Ko e © *Ko Ko®
The paraseters of this solution are the magnitudes Kio end the paase .
angles 10'3‘ Differentiating Equaticn (31) <re have
o~
1 i 1 19
] o~ 1 . ] ] ~ry A 1 ] ~h 2
Moaif Kge Ttk e © 4 (K + iFjg Ky + (Kyp + PKo0)e

If the lust two terms are set equal to iero,

t 17 1 ~n 1
(Ko + 1““;"10]‘1'9)"" T4 (kg + Bpifay)e

2 = 0, ("'2)

= e

* In Reference 7 1%t is shown that thie method is fundamentally the samc
as that of Van der Pol. They differ in the :’act that Kryloff and
Bogoliuboff erxprecs the linear soiution in polar co-ordinate form
and Van der Pol expresses it in Cartesion foim.
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then Equation (k1) mny be differentiated again to yleld ,5.
i i
1

1
~ 2 L2 2, J
“ - ?
A - ¢l KLO e 2 K20 e +1 1 \Km + 1310 Klo)e

(43)
7 o 7.
s 10, (Ko + 15 Kyple
*
Substituting Equations (31, k1, 43) for A, X, A" in Equation (LO)
' ~
and sclving for K, + mw K by use of Equation (42),
~
- 19,
’ ~, M2 f(p) e
Ko * 10 %10 = —— (14}
17 re
If the right side of Equatior (4k) is now averaged over a period of

¢2 - ¢1, and the result divided into real and imaginary parts,

xlo -0 (45)

- “102 *2“202-]
ko oo

By symmetiry,
x;o =0 (86)

oo
S o

Equatious (§5 « M7) show that the first spproximation. to the
solution of Equation (30) is an epicycle with no damping but with

fraquencies vhich differ from thoss of the solution of the linearized

esquation. The currections to the frequencies are the 710 s given by
Equations (b6) snd (M8).

2 . <
¢;.?1-u2.x%‘1’._.;2‘.i_ (48)

4
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¢é'?{; + My —;3'———— (49) ,

In order to compare these results with Equations (37 - 38), Equation
(48) and (9) are first added and then multiplied. After msking

i
I
use of Equetions (32) and (53), the following relations may be { : ﬁ
obtained, t L

- K, 2 . | '
+¢2=vu¢2<-—1,%,—-—;°—) (50) 5
~ °1 -8, 2

et b - Ko 7 ]

o= My + Ml K L K20 'z; _‘32 |

(510

2 e 2 2

- P (Ko + 2"202'(’(20 *+ 2Kp5)
h @ - %"

.

But if second arder quantities are neglected, Equations (50 - 51) are -
the came as Equatiams (37 - 3J). Thus for twice the work we get the

same result.

As a further basis for our quasi-linearization technique a apecial
form of Equetion (30) will be considered for which an exact solution .
is knowvn. This case 1s that of a statically stable non«spinning missile
in plans=- yswing motion. If A ie replaced vy 8 e19 vhere @ is the
orientation angle of the plane of yaw, Equation (30) assumes the furm

8" - (i + 4, )3 = 0 (52)

where H°<0. For plenar yawing moticn 8§ must go through zero and, hence,
the two amplitudes must be equal (l&o =Ky = K). Finally according to
Equation (37) the frequencies for & non-spinning misaile differ only in
sign, (¢1 = 4; = #). The quasi-linear solutioa of Equation (52) is

s special form of an epicycle,

8 =K (eml + e i¢2)e_1e
' (53)
-8 cos (8'p + 4y),

25




for which Equation (38) reduces to

am -8 M, (54)
where 8 = 2K, (maximm value of &)
Po= o~ 0= 9~ Fy

The exact solution of Equation (52) 1s an elliptic function with
period determined by complete elliptic integral of the first type. Thus
by use of a little algebra and a table of complete elliptic integrals
it 1s possible to compare the periods predicted by Equation (54 with
the period of the exact solution of Equation (S2). 1In doing this two cases
must be considered:

1. A moment which grows faster than a linear moment (}.‘.2<0)

2. A moment which grows slower than 8 linear mouent (u2>o) and,

8
therefore, actually changes sign for M%—g— =1,

]

Althou;h a gquasi-linear t.ppraxintion may be reasonably good for

sz

rcuombly lucge values of when H2 is negative, it certainly

)
cannot be good for values ofl%—’ near unity when “2 is positive.
’ ’ v

With this in 3ind wve asy now state the surpila: g r- ulte of this
comparison vith th: exact tosory. For negative N 's, Equaticn (82)
predicts the periol with less than 1% errcr whenever the non-). ineaﬁz
roment contributicn if leas than flve times. the linear moment i( Sk
!or positive la'n the orror will be less than a percent when the
1inear moment covtribution is less than cne-half the linear i.ment

8
(|-'%°—— l(é }o In thiv cese the error, hovever, rises quite rspidly

for larger angles. As a result of these facts it is reasonsble to meke
use of Zquation: (35 - 38) with considerible optimiem.
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Turning now to the question ¢f more gensral non-linearities an
examination of the algebra used in Equations (35 - 38) indicates that
any polynomial function of 62 could be used. In order to obtain

the effective values of higher powers of 52 we look for those terms
. 19,
in Ban vhich upon multiplication by A yield terms in Klo e or

1¢

Ke e 2. Clearly the only terms which have this property are

0 18, - 8, LB, - )
constants, e \72 17, and e™*"1 2’. In the binomial expansion
of 62n the only term in which these evponentlals appear are various

[zml -8) U, - gl)]

Alihuugh tiie constant terms are unaltered in ell three forms of effective
yswvs, [ezﬂel’ Ezﬂeg and [5211 s the cosine term makes different contri-

multiples of the cosine, 1i.e. CKJ.OKZO

Exﬂ 2 2
butions to these forms. For [6 o1 1ts gonjridbutign is CK,,", for [6 2

/ 1" F2

As an example of this algorithum we calculate the three effective

forms of b".
Fram Equatina (25),

gt

2
(8, ¢2)”1_(¢2 ¢1))] (55)

= | &+ de
2 2
vherea-xm +x2°

® = K%
The exponential form of the cosine allows an easy selection of the

constant and cosine terms of the expansion. These particul-~ terms of
the expansion will be identified by brackets on b!"

E}h]-a2+2b2+23[] (56)
where[ ]- b(eiﬁl ) ¢2) +é 1(¢2 i ¢l)) ,

In order to cbtain [5ﬂel’ [E'u]e2’ or Eﬁe’ x202' K].Oa’ <
Ko g - lc202 %
¢ - 9

Equation (56).

respectively should be inserted in the empty brackets of

27




e [sh_el = e +26° + 2a E{zoa] {57)

[5“— . &2 + 2° + 2a E(loe__j (58)
- 2 .t 2
o, - ¢
[Bh_ e = 8.2 + 2't>2 + 28 F(lO X Kgo 2 (59)

g - By

In Table I velues of 52:1 are given for all values of n between

_one and eight.

L, GECOMETRIC NON-LINEARITIES OF LARGE YAWING MOTION

The basic quantities measured in free flight are the co-ordinates
of missile's center of mass and the direction coeines of its axis of
sysmetry., 8ince the usual formulass relating the direction cosines
and the motion of the c.m. the camplex yaw A were derived for small
yaws, the exact relations have to be derived for this report. In this
derivation we will find it convenient to keep the 2-axis in the horizontal
plane (fixed-plane co-ordinates). Unfortunately these co-ordinates are
not the same as the non-rolling co-ordinates (¥ = 0) and 1t is, therefore,
necessary to calculate 9 for these co-ardinstes. Swrprisingly ecough in
Reference 8 it is shown that not only is  finite but 1t has a non-zero
average value. In our development the cumbersome Eulerian engles of that
report will not be used and the desired results will be obbtained in a

somevhat simpler fashion.

Co-ordinates in the free flight range system will be identified dy
(x5 %55 x;) and in the fixed-plane ystem by (¥;, ¥ps ¥5). The range
system has a l-axis pointed downrange along the intersection of
horizental plane and vertical plane containing the gun. The 2-axis lies
in the horizontsl plene pointing to the left and the 3-axis up. The
fixed-plane co-ordinates have the l-axis alorg the miasilets axis, the
2-axis in the horicontal plane pointing to the right, and the 3-axis
dowvn. Finally the non~-spinning coa-ordinates, which sre our fundamental
co~ordinates in the theory, bave the l-axis along the missile's axis,
the 2-axis initially pointing to the right in the horiconial plane
but moving so that ¥ 13 zero and the 3-axis fixed by the righteiwud
rule. :

28
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In order to calculate the complex yaw it is necessa.ry to know the

components in the range system of the unit vectors, l » e . e) along the ‘

fixed~plene axes. Siunce the fixed plane l-axis lies along the missilets
axis of symmetry, ccmponents of the unit vector ? are (nl, By n ) vhere
the n, are directiou cosines of the missile's axis with respect to the
range system. The restriction of the fixed plane 2-axis to the herizental
plane 1s equivalent to the requirerant that the third component of ?

be zero. This together with the requirement that it be perpendicule.r

tc the l-.axis snd pointing to the right completely determine the
components of the unit vector along the 2-axis.

R A "2 e SRS (61)
\Fl + n? ‘\["1 + my?

According to the right hand rule, the third un't vector 1 egqual to the
cross product of the first two.

!
?sn?lx?z-(nl,nz,nj)x( = = .-—'2 = 0)
B, +h, B *+1R

R N -+ MY S B ()
’\/;1 e ey v
With this information the matrix equstion for chsnging from the range
coordinates to fixed-plane co-ordinates can now be written:

(€3)
N m % >

_ 5 -m
T2 ,—'—nlz - n22 ‘\[nla " n22 ° X2
VAl e
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If the vector (%, 5, :’c}) 18 inserted on the right side of Equation (63),
the left side would yleld the components of the velocity vector in the
fixed-plane co-ordinates., These co-ordinetes will be denoted by the
gymbols (u,, ﬂz, 05) and the symbols without tne circumflex will be
reserved for tbe non-rolling cc-ordinate system.

N 1*2‘
LI 2 2 (&)
Vo v m
s 2 24,
e o npits - (B + 8y )% (65)

[ 2, .2
ot
.\ 2
Dividing by the magnitude of the velocity vector, u = "‘1 [-1@2&;‘)

dx3‘ 2f1/2
(Iﬁ ’ and eimplifying, we can obtain the Zollowing expressions
for the components of the complex yaw in the fixed-plane system:

+

n oo |
sz-%- n2 IE (“)
—&2—2““&—\?
"'1122)\/14'(3;;) "'(-d?‘,;’
dx, 2 _2,%
. & )0y + nyng(g=) - (8, + 0,7 )(ES)
el = = (67)

2 2
2 2
haZ s b e ) )
For the case of a flat trajectory, the derivatives are the sams
mrotuaniwdaunzmdn5ormllbrmd,uw-hmotm
flc:t'thi‘inla-1-n22-n32,vecnnobta.inthoﬁutordernmw.-tion

of the yaw components
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Turning now to the problem of couputing the axial angular velocity
of our fixed-plane co-ordinutes, we first must state the definition of
the angular velocity vector in terms of unit vectors along these co-
ordinate axes E;, ?2, ?3

.

. (-?34'1?2)

vhere ( )' dsnotes -23 .

Substituting in Bquation (70) the co-ordinates of the vectors
72 a.ml?'3 from Equations (61-62) we have

2\ 5,
Vi-'n3 \\ Vl-n) (72)

\
P i) ny (ymp" - 5y ')
= Z

J.-n3 l/{-nf 1-n5
0 -Vl-nj

+1 (:‘.1_':2.;12_:‘.}.)

1-:\5
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‘. v

n
= 3
= - iy =) (74)
1l- n3
If the angle between the missile's axis and & vertical axis 1is
denoted by ¥, then n; = cos ¥ and Equation (7h) reduces to

V- a} cot ¥ (75)

Since 32 is the anguiar velocity of the missilets axis about the 2-axis
which is fixed in the horizcntal plane, its integral shculd be related

to ¥. Integrating ﬁz as given by Equation (73), we see that this is true.

P

S.—Ap.a dp = arccos nj(p) - arccos ns(o) (76)

)

e oow --§—ﬁa ap + ¥, (m
°.

Although Equations (75) and (77) are very useful for the numerical
integration of the complete eguutions of motion, we will find Equation

(72) to be much more amwnient for the purposes of this report.

If the flat mJectory 8 “roximation X = pd 18 used, a first order
approximation of ¢ may now be obtained from Equations (67), (68), and

(72)' ] xg "
$ -n3né - (3.3 +-:%) (&; +%)

W LY (78)

vhcre'l'-—xgg +f§.‘§.5 +-x—3-;2— .
4

3 good appreximation to the yaw components s an epicycle.

% = K, cos 31 + Ky co8 %2 (19)
A A A
by =g ata 4 0 s1a %, (80

33




vhere Km are constents and

A

¢i are linear functions* of p.
. A A

.« ),Bka =

A »
o3 [t en ] o [ H e Ao ]

. (K)o sin 33, + Kyq 8in A‘6.'3)(' K0 1‘31'. sin a1 - Ko %; sin %2)
|
|

(81)

- (a; + a;)i(lo K,q sin ﬁl sin 32

From Equation (81) 1t can be seen that £ has & non-zero aversge value

of - é [xm'" 31 + K2°2 e;] . (Fortunately, for small ysws, this can

be neclect=d.)
Turning to the small’ trajectory term T we consider only the e
and obtain the following relstions fo;' conatant

-~

ffect of

P

gravity snd 1ift force
velocity ugy from Reference 5.

[ ~
?"%*"LL&'Q sin ¢1"%?|‘9 “‘“32 (82)
*y 2

?-Qz-ﬁ!n-&[%c«ali-%ef cosQQ]. (83)

mqimmllcmtlnuﬁmd
8 1is the acceleration due to grarvity

)
i 55
' A 1ittle slgebraic manipulstion results in the

relstion that

—
The circumflex on the 31'3 is to indicate that theue angles are

medinmtmdpumsyummdnotuthexm—roning
system of Secticn 2.

“m: 418 due to the assumption of & flat trelectory.

. | “
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o )
T --(_) J + + fluctuating terms (84)
2

, !
il P2
Since for most missiles AL', ~ 10'6, T is effectively the same order
1

as Kiou and we need only consider the fourth order terms which ure
independent of the trajectory to obtain a complete fourth order
approximation to the non-fluctuating or "D. C. componet’ of v. This
expression is calculated in Appendix B.* If we add T to this and define

[9] to be the "D. C. component” of ¥, we see that
1 2 * 2Ky 2 I‘zo +2 Klo
[1--3 [Klo 3 (1+ ) * Koo 8 (1+

- () 1 ( K2° )t (89)
¢1 "’2

With these results we can now calculate either the exact position
or the average position of 2 and 3-axes of the non-rolling co-ordinsates.
‘ Since our fixed plane co-orcéinates are turning at an angular velocity of
? with respect to the non-rolling co-ordinates, we have that
)4

J‘#dp
[+]

Aede (86)
As 1t shall be shown latsr, ¥, in Equation (86) may be replaced by ]_OJ for
the data reduction of large yaw firings.
The eftect of large yawing motions on the results of Section £ manifests it

self in twec ways. First the distinction between the non-spinning co-ordinates
and the fixed-plane co-ordinates becomes important. Accordl ‘g to Equations

‘ % In Appendix B the frequency for pure precessior is compared with the
approximate relatior based on this expression tor [0] « As can be seen
in Fig. 15, the agreement is good for 8 = sin 459,

(85-86) these co-ordinate systems rotate with respect to each other with a non-zero.




As Ay
average[@} . Iz ¢1 and ¢2 dencte the epicycle frequencies for the

range fixed-plane co-ordinates, it can be seen from Equations (85) and
(86) and the assumption that the motion in fixed plane coordinates is
also epicyrclic that*

-5 (3] 08 - e o o] (&0
f-8 [k b bl @

The second effect which is the appearance of the cosine of the yav angle,
may be seen in the equaticn of undamped yawing motion in 4+he non-rolling
system. This may be obtained from Equation (20) as

y L (-f+ SN -m =0 (89)

vhnrenslka'a.)’u-'-uo+n: a2
Mokt Gy

SETRE LR R CPEL £

L4
Equation (89) differs from Equation (30) by the -i L' term and the presence
of the cosine term in M. In order to obtain the.correct form of Egquations
(37-38) we must derive s good approximation to -i .

{0
(=)’

.- G)—s
Q-8) (90)

*por rapidly spinning podels af yav Equation (88)'can impose a
large correction on ‘2' It 51 , = 40 and x> .25, ¢2 becomes negative

and the product of the rates in the non-rolling sysiem vould be negontive.
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Inserting Equation (25) ir Eguation (90) we have (51)
o1

: 1B, - 8,) AR -8
é“'iﬁxmxao E¢1‘¢2)° o v (B -f)e ¢ 1]

Substituting Equation (91) in Equation (89), and operating on Equation
{89) in the same way as we treated Equation (30), the fg&slowing twom
“ 2

equetions may te obtained from the coefficients of Kloe 1 and Kaoe
respectively t
L
B.2- T, + My + My 85 + Ko (R - B)(5) = 0 (92)
t
B2- Vhy + My + My 8oy +K (B - 1)) =0 (93)

Eliminating first M_ and then V between Equations (92) and (93),

~ Ko - Kap
g eyl [x1°2¢;+x2:¢;] e Ay

¢1'2

£6od o ongsd] -nednf o

Thus the geometric zon-linearity of Equation (89) introduce correctiom
terms to the left sides of Equations (37 - 58) of the previocus section
and replaces Mz by M; = L(2 - % Mo in those equations. If the frequencies
in Equations (9% - 95) are replaced by their fixed plene values {rom
Equation (87 - 88), and fourth powers of K,,'s are neglected, Equations
(9% - 95) may be written in the following useful form.

2 2
B+ By - EEloz8 +K2025"] Ve - -:20 ) (%6)

¢1'2

ai'B;E"%(Kloz'PEOe]‘Mo‘}gbez (97)
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An exsminstion of Equation (97) suows that the effect of » large
\j pevcentsge change {1 the frequencica implied Yy Equations (87 - 88) 1s
almost completely cancelled when the terms in the cosine of yuv are
‘1 properly handled. As @ check on the derivation of Equations {96 - 97) they
‘> are derived in Appendix C directly from the yaw equation expressed
J’ 4n the fixed-plane «ystem. This derivation shows that the assumption
: {mplied in Equations (67 - 88) 13 equivalent to the basjc aspumption
} underlying this whole report.

5. EXPERIMENTAL RESULTS

Ir Section 3, s very sisple exsaple of non-linear yawing motiun with

tvo degrees of freedom 1s considered in great detail. The very same
quasi-linear sssusption may be applied to & much more complicated system.
In appendices D and E the yswing and sverving motion of & missile for
wvhich £ll serodynamic coefficients are quadratic functions of % 1s
considered. EKquations relating the parameters of the epicycle .
approximation (frequencies and dampirg exponents )} to the coefficients

of the parent non-linesr equation and the saplitudss of both modes are
darived. Since these relations are essentially spproximations, their
valus must be determined by quur auperical or experimental checks.

A good check on these approximations can be obtained by mesns of
1 the sctual free flight motion of a missile acted oo by non-licear forces
and mowents. Tor this reason various results of firing tasts om BRL's
spark nncu’ were examined for possible verification of the quasi-lincer
hypotheeis, The results of this investigstion werv quite encoursging.

The effect of a cublc static moment on three different prograas vas
firat considered. These progrsms were & finned missile program (Slmm
mw-m) , & body of revolution progrea (Army-Novy Spiuner Rouket
ms), and a large yav body of revolution prosgres f£ired by E.
Hoecker.

In the fiuned missile progran & free flight range value of x" vas
computad from the product of the frequencies. According o Equation
(38s) and the definitions of M,

- R
| | ‘K '%“1~‘2'%’&°2°.2 (98)
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Thus the range value of l%(, as obtained from an epicycle fit of
individucl rounds, should be a linear function of the corresponding
effective squared yaws. In Figure 2 the range values of KM are
plotted against 6e2 and different lines for each configuration tested
are dravn through corresponding points.®* The linearity exhibited by

thece experimental points constitutes the first check of the theory.

It should be smphasized that {n all cases, epicycles with damping
vere fitted to the data and although the exponentidlly varying Ki's
actually should have appeared in the calculation of 5e2 they were
approximated by their midrange values Kid'a' The approximati~n is
implied by our basic quasi-linear assumption,

The Army-Navy Spinner Rocket program consisied of three model
lengths each with three different center of mass positions and fired
at three Mach numbers. A maximum of twenty-seven values of KM62 was

thercfore possible. Since for each case at least foui- points with a
reasonable gpread in & e2 are necessary for a good determination of KMBZ’

it vas actually possible to obtain only sixteen values from & careful
snalysis of the 126 record rounds of ‘he program.

Theses values with their standard errors are listed in Tsble II.
A sample plot of the experimental points for the O-calidber model at
Mach number of 1.8 i3 given in Figure 3.

For some of the Mach numbers and configurations, wind tunnel data
teken by R. Krieger were available. The data for the overturning
moment were fitted by cubics and tln cubic ccefficieﬁta (Kubz) ere
listed in Teble II. At all seven poinis of comparison the agreement

is good.

" Since these finned missiles were not spinning, B! = - B and the
effective squared yaw assumes the concise form g (K102 + xzoa.')

In Reference 10, the K, 's were erroneousiy plotted against

- 2
RROT)

dctusTly % xu'aai

—

() + x,oa and, hence, the slopes obtained in tha. J:port are




TARLE 11
FCR THE ARHY-NAVY SPTMNER ROCKET

Rear
Center of Mass

Middle

Center of Mess

Forward

Center of Mass

Mach

Number

Wicd
Tunnel

Range
Fise Caliber Long Models

Wind
Tunnel

Ranga

oA
i+
-t 0

-2
-14

Seven Caliber Long Models

o n
+i+d
~0

7

ot
hahARd)

JN%

[ I ]

-26

nn
o

Models

Nine Caliber

N
+iel

0
Lal

-t
i+l

RR

[ 3X-+ R'3¥
- - *
et

.

ter of mess for these RCM nodnis is .2 cal. rear of iis

usual locatiom.

cen

-
The




Since models with three Aiffersrt center of mass locstions were
Jired, a second check is possible. If the normal force is expanded
as a cubic furction of &, the uzual center of mass relations provide
that

KMO(q) =Ky, * 1w, (99)

Kyﬁzm =Kot g2 (100)
where KM (q} are the moment coefficients for a center of mas: located g
i

calibers rear of the center of mass for the KH ts.
1

This meuns that the KMO and K“GE'B for different center of mass

locatious are linear functions of location. It was possible to measure
three values of KMExa, for only one configuration and one Mach number.

In Pigure & both KM and 1'.1%2 for this case, are plotted against center
: (4]

of mass location. The fact that the cubic coefficients as well as the

linear coefficients fall on a straight line is another point ir favour

of the theory. The slopes of these lines are KN 2 end KN respectively.
;) o]

For six other ceses it wes possible to compute KN 2 from two velues
of 2 and all seven values together with the correspgnding linear

values (l(N ) ere tabulated in Table ITI. Once again Krieger?s wind
0

tunnel data were analysed and it was found that at all points of
comparison the wind tunnel results were in good agreement with center
of mass values.

In Appendix D, 1t is shown that the 1ift force and Magnus force
coefficients may be directly measired from the swerving motion when it is
large ennugh. According to this appendix, most of the swerve is aasoci-

ated with the lower frequency and, hence, the raivee vaiues of xL and KF

for each round should be plotted against the corresponding value of 5e22‘

A sample plot of this process is given in Figure 5.
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TABLE III

P et ]

e e mae antn oe

% K2
Center Swerve Wind Center Swerve Wind
of Mass Tunnel of Mass Tunnel
Pive Caliber Modsls
.98 .99 92 7 5.2 » 2 5
1013 101} 1010 bted 10 : 2 T
Seven Caliber Models
1.02 .98 - 20 10 +1 .-
1.13 1.13 1.08 12 9 b 10
1.21 1.20 1. 18 2T ¥ 18
¥ine Caliber Models
1.3 1.06 1.07 17 17 +1
1.8 1.1h 1.23 1h.2 + . 15 2
2v5 1.71 1.20 N 0 = 2




1

In order td calculate KNC\Z from K‘LBE’ it 18 necessary to expand

Fquation (17) in powers of 62 and compare coef{icients

. g ] = +
Kno KLO KDQ (101) ji
LTSLPEL LRSS
2 T2 2k "R (102)
Using these relations it was possible to calculate eight values of %

doth KR and KN from the sverving motion and these are given in Table
0 a2

III. With the exception of two values of KN 2 for the T-caliber models
-]

the agreement is remarkable. The reason for these two discrepancies
is at rresent unknown.

Although the lateral displacement Que to Magnus force is about one
tenth that due to 11ft, it was possible to make two messurements of
Ky o+ The experimental points for these two cases are given in Figure 6.
Thg axcellent internal agreement of these quite delicate measurements
is extremely gratifying.

Finally in Roecker's large yav program it was possible to check the
treatment for the geometric non-linearities. In Figure 7 K‘l s &8

calculated from Bquation (97), is plotted agsinst 6.2. Here ve see

that the data is essentially bilinear. Each line corresponds ¢o a

cubic segment in the moment plane., If the parameters of each cubic

are culculated from the slope and intercept of its corresponding line

in the KH - 5‘2 Plone, they can be pieced together to for . a smooth

monent plot. (Figure 8). (An examination of the spark shadowgraphs

revealed the fact that flow separation occurs at about 21° and this

explains the sudden change in the moment curve it this point.) In

Figure 9, K; 1o plotted versus B_,° and the corresponding lift force ;
plot 1is given in Figure 10.

8ince wind tunnel meesurements for this configure.i~» had been
mde by W. Buford, & comparison was poesible. The data was divided
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into angles of yaw lecs than 21°% and grcater than 21° end pairs of cubics
fitted. The resultin ng coefficients are compa.red in Table IV. The

agreement is excellent,

As 8 reault of this rather gpectacular success with the non-linear
stat.: moment, the more difficult problem of Magnus and damping moments

was then considered. In Appendix E it is shown that a quadratic dependence

of Ky and Ky - xm on 8 so affects the damping of tha epicycle that the
usual linear formulas for KK - KMA and KT are actuslly the following
combinations of coefficlents:

_ - - - +* ¢i®2‘¢éxw2
o)~ e e

»ange
(103)

2) <:; :2) (%0 -
K g~ 0 * “';52 éf ) <K‘°2¢.' ; - "?‘2’%'22) (100
m‘;z'kxba '_‘maa*%‘um
i?1"-:!‘2 = K2 - z ..

Rmpvnm'afxx-xnhmdx.rforthnw-mvyepmernochet
prograa vere fitted by least squares to Equations (103-10k) and velues

of &.0, KSO ‘u\o' x.l o and Kﬂbz vere camputed. In all cases the
coofficunts of KEQZ vero small and this quantity was poorly det-rmined.

‘552 vas therefore omitted from Equations (103-104) and they were fitted
ssparately to range nlmntxn Kmand&r

Siace this messuremart depinde on the Camping expoments and hence
is quite delicate, it was possible to obtain only eight values of K,r 2

f:|.-uxr mdfmm(xn IM‘) . Thaumultedu:’-\hv

b




TABLE IV

Large Yaw Results for M = 2.3

| b By w2

Wind Tunnel 1.85 625 - 1.1

Range 1.82 .82% - 1.0
Wind Tunnel. .To9* 0.0
o Range STI9* 0.1
/’f:
P

* Pvelusted at separation

N

KL0

s

1.01
0.99

1.h5#
1. L3

k.0
3.6

0.0
0.4

before separation
5 £ sin 21°

after separation

8 2 sin 21°
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» xraz for Mach number 1.3 was given in Figure 6as 8 +1.

NOL Wind Tunnel messurements were made by Luchuk and Sperky
caliber model at M Between 1.6 and 2.5. According.to the::
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and the ag-reement between paiis of K‘l‘ 5 is within the standard errors.¥*-
6 N

In Figures 11 - 12, a pair of plots of experimental points for KT
range b
and (¥, - ) are given.
: L U =

,‘7\ In 4ll four cases vaiuea cf K‘I‘ z for two center of mass locatic.s
" )

2' 8 were computed from these. At _ :

]
wver: obtained and KFGZ 8 and CPFE:

the Naval Ordnance Lsboratory, Luchuk end Sparks > have made wind tunnel
measurements of these quantities and their results, as given at the hottom
of Table V, are in reasonsble agreement with flight tests. Finally i:
should be noted in the Table that at one point of comparison of center of
mans and swverve values of KFGQ, ( the seven caiiber models at M a 1,3, the

1

agreement 1is good.

As a last example of this quasi-linear technique we will comsider 1
body of revolution which displayed an extremely non-linear Magnus momen‘.
The range valucs of ’LL‘ for this model were cbtained by E. Roecker and are
plotted versus bea in Figure 13. Although these data are fitted by two
lines, only the first line is well determined. In fact if the fourth po‘ut
from the right were neglected, tiue large yav values would be reasonably
well represented by the dashed horizontal line.

o In Figure 14 the corresponding cubic segments are plotted and compared
- ; with a BRL wind tunnel curve obtained by A. Platou. The good qualitative
il agreement for this strongly non-linear moment is remarkable.

e ; Since the quasi-linear relations have been so well ve-ified by

experiment, they should be quite valuable in the important problem of the

: ) prediction of missile motion from & knowledge of thes force and moment

/ curves. Thls application of the quasi-linear technique is described in
more detail in the next section. ~

(‘ ) o Thus an observed dependence of (xx‘- KHA) or ~ammitude of yaw is
: range

i not recessarily due to non-linear damping moments but may be lus to a
non-linear Magnus moment.

k7
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PREDICTION OF NCN-LINEAR YAWING MOTION

Although the aprlication of the tiwory of ihis report to range data

snalysis enhances merkedly the value of spark ranges, an even more lmportant

applicstion 1s the pradiction of the yawing motion of & missile acted on
by non-linear forces and moments. The experimental results of this report
ind{cate that this inverse probler should be successfully handled by the
same theory. In this section we will outline the procedure for this

prediction problem.

First the sizes of the two arms must be obtained from the initial

conditions

e kg =K eiﬂsl + K, ei¢2

: .1, :
M=o 180K e T4 (a4 Bk

14,
o2

(205)-

(106)

In order to take care of the effect of demping the trajectory should
be divided into intervals over which neither amplitude changes by more
thun 50%. The length of the first interval may be estimated from the
linear dewping. If the calculated qussi-linear damping is much larger,
the interval msy then be shortened and the process iterated.
of the other intervals should he determined in & similar manner. Values
of ¢;, frequencies in non-rolling co-ordinates, can nov be computed from
Equaticns (32 - 93) vhich ave simple quadratic equstions.* (B! may be
computed from Bquations (87 ~ 88).) Then values: of o, may be computed
from Bquations (E¥ - ES5) which are even simpler linear equations.*

t
# For ease of calculation the linsarized values of fi,s and q

pleced in the coupling terms arising from the none-
iterstion performed if needed.

hnzar g%

The lengths

s may be first
caetyy and an
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If a inore‘ complex polynomial dependence of KM end KT un 52 is
required, this may be handled in the following wey.

Let

n
Ky = E Ky and (aom)
k=0

n
Kp = E K“.'Szkt’gk' \108)
k=0

Then Equations (92 - 93) aad {24 - E5) take on the following slightly

*
more complex form: n
?

A\l -t 1 1 ¢ .
g2 - Vh, + E W, (P + 008 - B)ER) + oy - ) = 0 (209)
k=0 .

AR}

n '
' -yt * z2 ] 13 ¢ : . -
b - W, +§ My (870 + Kpg o - g5 +opliim gp) = 0 (3

o (2f - ) - Bofy + ¥ T (8™ - B2 [“‘102 + Kpg Wy + K2029’2

- J:.bami - B )Kag f ek, + oo ) (1)

+ (31.22_;.5221‘-)1(202 -0

. n
AU R USL N AL PR S [og? 8, + )

k=

*
Eqe. (92-93) are also slightly modified by the presen:¢ of damping.
49
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"I @ - B+ Baleg ) + apy)  (112)

\ T
&by raf) o
* ‘—"T—“)Klo =0

<
. * 2k pd’ 2k
“here 8 =% E Ay on®
k=

3
Ty 8 = 2 ‘(Jr.azk - "1-2 JTa2k) 8%

k=< =0

and those terms appearing in the right hand summations which have powers
of 5 greater than 2n are neglected.*

It should be rememhered that these equations are derived on the

sssumption of a flat trajectory. The complications introduced by gravity
¥111 ba considerved in a later report. In any event for a large class of
prodlems this simple procedure should sliow reasonably good prediction of
the motion of missiles acted by non-linear forces.

7.
1.

2.

3.

SUMMARY

A convenient expansion of the serodynamic force system for large
yaw has been odtained and the necessary gecmetric relations for

these large yaws derived.

Relations for parsmeters of & linear equation which is ¢ juivalent
to the actual’ non-linear equation have been derived.

These relations have been tested by actual firing tests and
excellent internal consiatency has been observed. Where wind
tunnel measurements were availatls, good agreement has been
obtained.

*

The effect of the terms in J. which are higher order than 82 on the

]
JL A tera in Equation (20) has been neglerted.
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APFENDIX #: Derivation of Lquations of Yawing Motion

In thie appendix the sxuct egquatioas of yuwing mction will be derived
in twoc steps. First the irag squatfon which governs the magnitude of
the veloc'ty vector will be obtained and then the equations for t.h;
trensverse velocities and angulsr velociti{es componente will be derived.
By means of these ejuations the exact equation for the complex yaw,
A, may be formulated.

The fundamental force equation for the velocity vector may be

written in the form:
a5
LY g—: =T+ g (e1)

vhere ? is the aerodyramic force vector,
? is the acceleration due to gravity vector.
If th's equatiun i3 dct multiplied by u,

- af LTI T B (

N'R.mﬁ.“‘

vhere %‘é i{s the derivative of the ascalar, u.

L]

2
Dividing Equation (A2) by -"-';3‘-, changing to the independent variable p =

; 4dt, and denoting the trajectory components of T and 3 by rD and &,
ve can obtain the final form of the drag equation.

2'.Pnd‘l,rd
W
‘A3)

--JD+J8
. 3
pd
MNJD.—;—
I -l
¢« >

et 8 e v e w8 < v ap o v
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Turning nov to the consideration of the comporients of the
velocity and angular velocity vectors in our moving co-ordinate system,
ve write the equations for ihe conservation of linear and anguler . : 1

womentium in the fallowing forma.

E6d-Pead ) |
g{': @ - % (A5)

vhere t - ’ anguiar momeéntum vector

= axial moment of inertis
B = transverse moment of inertia
?- serodynamic moment.
In order to calculate the derivatives in Equations (A% - AS) for
compoaents in our moving co-ordinate system, a useful vector identity
for use in a moving co-ordinate system with angular velocity 3’ will be

stated.

dx
‘a‘;(i‘)-(;?-,?f-,n-’-)mx: (a6)

Applying Fquatica (AS) to Equations (Ak - AS) vith U = (R), @y @4),

e T AN - (A
R AL LI R R Y _
Syl vy -ep T3 & |
My "
Bip + oshm - @ Bo, “| % (48)

Bby + QBap - @ Aoy g
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Since the axial component of the angular nmomentum equation 1is uncoupled
from the other components, we consider it separately. If Ml is replaced'
by its definition, Equation (7), the equatica for the exial spin may de
written in the following dimensionless form.

(49}

vhere vy = —
u

kl S\E axial redius of gyration in calibers

3
-0
JA B KA
Substituting in Equation (A9) for %t from Equation (A3), we can write the
final form of the roll equa.tion.*

v (D - J’g)v | {a10)

-2
whereD-JD-kl JA

In the trestment of the vector compouents in the plane perpendicular
to the missile‘s axis, the rotational symmetry of the force system may be
exploited by meking use of complex numbers. Multiplying the 3-components
by 1 and adding to the 2- components,

s ¥ 1!5 (m2)
(624-1113)-11:1(%4-1‘95)#1{11(\;2-»1\:3)- = +g2+155

1
GGy + 18y) - 10t - @)(ay + 10) = 25 2 (na2)

F

“ In the analysis of this veport, the ewnll change in v predicted by
Equation (A10) will be neglected and all derivations will assume

coustant spin.




If Equations (All - Al2) are now written in terms of the dimensionless
variasbles, p, A, £, 4, v, 0, the following convenient form may be

. obtained
(F, + 1F,)a (g, + 1g.)d
).'+(-§+1$)x-ilu- 22 3 +822 3 (a13)
. mu u
2
' (M, + 1M )
W +(l‘:+ic)p.-17u- % N3-—-— (ALL)
B
+ 1iu
wvhere )\ = 2
‘--“l .
u
: (mad-im})d
! B u
4
- b
. a
. - K A
: VEE TR O .

Ths aerodynamic force and moment may be expanded by means of Equations
(6, 8) and Equations (Al5 « Ali) may then be simplified by use of
Equations (A3) anda (17).

' - (a15)
Ced 410 - 18 - (- K+ I + Wgk=T (0 + 1) + 7
{ ' A -2 -2
B -iﬁ-v)u-xz (- v.r,r-1.7]“)wa(.rp-.rs-x2 Jx)n
(n16)

- ”‘2-2‘%(", + 1)

x
oa-
.HMN" Ji - xi

-

The grouping of Js M in y vas & correction introduced dy rrofessor

McShane in order to make the treatment nf gravity more accurats.
Bee Reference 12, )




R

(g, + 18;)4
7-—52_-_5-—2-—.-ng

u

k2 = E trensverse radius of gyration in calibers.
\

In Reference 3 it ie shown that the only force coefficient vhich

bas an sppreciable effect on the linearized yewing motion i3 the 1ift

coefficient JL. For thir resson the other forze coefficients in
Equation (Al5) will be neglected in the derivation of the yaw equation.

Zquation (A15) csa now be re-writien in e much more convenient fcru.

thy = a4 (83 + 1O - 7 (a17)

Differentiating Equation {A17) end solving for up' R
(a18)

L 1
ilp‘ =\" + EJL-% +1ﬁ ).,' + EJ;‘+1(¢‘--‘;O] x-7'+-i7

1¢ Equation (A16) 18 maltiplied by 14 , end Equations (ALT - 16) are
in the form

used to eliminate u and p' , the ysw equation may be obtained
required for the report.
Lot &

I P Er.Y It
A+ E+J‘8-3-1(v-2vj P

’

]
+[-n+u;+¢(7-3)-1('\7!-9(n+38-;)-3'] A (A19)

t
- G-(-i - 1)

-2
vhere H = 83, - Jp + K5 ("x'“m)

-2 -2 . -2
K-lkz J“-IJL():a JK-J'D-C-Js)-Bz JM

T = Ky - % 23y
G=7 - EJD-JB-xz'aJH)+1v:ly.
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A
APPENDIX B: 4th Order Approximation of v

dx2 dx3
If the trajectory terms are neglected (E'.'x— = de_i = G), Equations
1

(66 - 67) for the two components of yaw in the fixed-plane system

reduce to:

A ny 2]‘ 1/2
= - = l] - n ) (Bl)
) 5z “2[ 3
1 2 y
1/2
‘;. nlnj [1 322 - njz
3" 1 |
2 2 l1.n
< 4o, 3
- 1/2
, nzz (82)
a0y [l o S
3 1l- nz
3 J

Solving Equation (B2) for ny by an spplication of Equation (Bl)
A N l/ 2
By =2y (1 -27) (23)

A
nba‘i}i-%‘;.} 2.3, {B4)

Equation (Bl) is now solved for n, and n3 replaced by its value from
(B4).

A .
nzuxao-%]?kza'i;.. (BSI
Now from Equation {72) we know that
 _oters - marny)
a (m® +ny%)

0 o i)
By (“12 + "22)

' X
_ Byt . nyfy Dy (36)
o my en)
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' _ )
a nane(l +=i5 (n22 + n}z)) + n2=32n3 + ..

Substituting in Equation (B6) from Equations (B4 - BS),

A At A Ar A oA )
v=x313+).2x2).3+... (B7

As in the text, the componenis of yaw may be approximated by en

epicycle.

A ) p
Ay = K5 cos P + K, cos P, (88)
A .
Ay = Ky sin 81 + Kpp 810 a2 (9)
' where Kiﬂ are real constante and
1:0 are real linear functions of p.
If Equations (BS - B9) are used, a small algebraic effort puts
i Equation (B7) in its fipal form: {B10)
i
. 2 2 2 2
C2h Ko + Xy 24 Ko + %y
-0 P S *—T—) + Ko ¢2 @ """'"T'—')

A 1l
Ve (-2)
+ periodic *erms + higher order terms
In order to get an estimate of the range of accuracy of this
approximation we will consider the case of constant precession about the

trsjectory. Under this assumption one of the amplitudes of oscillation
vanishes and for a linear moment Equations (109 - 110) reduce to

’ g% - 7 ¢, *Z”;x Kyo: = 0 (B11)

» 2
vhere E ’bkxio mo
1/2 1. 2

?) =l-3Kg -

I 1. 4 .
‘-(l-xio -bex + . .

Frox Equatione (87 - 88) and (B10),
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A
RN W AN S T (m2)

e

¢l'

-1
gr (- '21‘ K102 - 213 Kiou) (813)

.’
>

w2

U

pyr (14 3 Kioa + g Kth)

Combining Equations (Bll) ani (B13),
.V L 1., 2 4 .
31"'% [““s’ QL +5K, +%K10) (B1%)
7
vhere g = Wg (¢ 1s the gyroscopic stability factor) and the + sign

is taken for i = 1 while the - sign is appropriate for 1 = 2.

It ¢ir' is the rate of preceesion sbout the trajectory or equivalently
the rate measured in the range co-ordinate system, it is easy to see
that ¢l' is its projection on the Missile's axis.

S Bt = 38, (m15)

Although ¥ 1s sctually e fluctuating quantity the period of the moticn
in the fixed-plane co-ordinates must be the same as that in the range
co-ordinate system. Equation (Bl5) is, therefore, the exact form of
Equation (Bl3). As can be easily verified the expression in xma in
-1 2,- 1/2
Equation (B13) 1s actually an expansion of 4 =(1- Ko ) .

If the first and second order forms* of (Bl3) are compared with
Equation (Blh),ameasure of the basic accuracy of our tecraique as
applied to the geometric non-linearities is possible. Tn Figure 15 the
ratio of the approximate frequencies to the exact are plotted for both
fast and slow frequencies and both first and secind order approximations.
For angles up to lt5° the second order approximatz relations show good
accuracy.
¥ Mhe Trst order foia of (BL3) 18

9; -3 E __V{ - ,-,1-:(1&- 3 xioa)] (1+3 xwa) while the second order
Zorm includes terms in Kio
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APVERDIX C: Effect of Large Yaw in Fixed-Plane Co-crdinates

If the overturning moment is the oaly acrodynamic moment to be
considercd and tals moment's coefficient is assumed to be linear in &,

Equation (Al9) assumes the form

' : (c1)
L"-B +1(V-2v:] (M + M25 ~0(v-v)+i(0-§- )])"0

For the fixed-plane system ?1s glven by Eauation (81?. Neglecting

squares of Kiz and making use of Equations (90) foré »

"+ F%)(bz)' 1 - A -y e P W) Neo (c2)
Fron Equation (78),
$ 2 K8,
3 IRT Sl
YR 38 T 3 (c3)

If we consider only the constant terme and those with frequencies (3 a ;
and (a al) » the epicycle solution may be subatituted in Equation (CS)

and we obtain the following res (ck}
6' 1(8 -8) z<3 8,
o--g[xloa +§08 *(—T) Kz(e J+'..

d

't 2 2
.. cl - . 1(31 62 )le? (Qi(al 32) e 1(32 - al)) .. .. (CS)

Subatituting the epicycle and Equations (Ci ~ C5) in Equation (C2) we can
obtain a pair of equations similar to Equations (92 - §3) but with

additional terms coming from ¢ and 0.

T BRI Sy S S
2 (c6)
] e
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a'K 2 a;lf 2 ;
As a4 #* 2 1 At ' o0 A - 3
¢2 - V¢2 + Mo + ME 662 "'1""10" ¢2 = 8 ) - 2 (‘¢2 - V) "

S R A BT

Eouations (C6 - C7) may now he simplified by use of the linear apgroxi-
mation v = 8: + 3; .on the coefficients of the quadratic terms X, , .

86 -B) s Q20 B -8 w58 E 0 (08)

(1)

2 {

BT - - Gl B B - B = my e 02 (09) |

Eliminating first M, and ther Vv from Equations (C8) and (C9), the following !
final results are available,

pl + ¢2 -7 E(lo 6' 6% =V + H; T:—K%O— (c19)
B;Q;E--%(Kloz-txzozﬂ-%-bu‘;bf (c 11) :

Since these equations are identical with Equations (96 - 97) the ?
correction for the co-ordinate system used in the text is based on
the seme equivalent linearization assumption as the other results of

this report.
APPENDIX D: SWERVING MOTICN FOR NON-LINEAR FORCES |

8ince a proper treatment of the swerving motion should yield values
of KR 2 vhich may be compered with the results of the center of mass
uthos, we will conaider in the appendix the swerving motion of &
missile a2ted on by non-lirear serodynamic forces. If the aerodynamic
force in the range co-ordinates is dentted by (!'l__,, L I‘}r), 1t can
be shown from Equatior (A3) that




.Far-'-ir

.- (n2 +1n3)Fl +

-, F2 + n2n3F3

l-n

2
3

2.
- i—vl-

nzF

(D2)
3

Substituting from Equations (5 - 6) and neglecting the small Ks and K

A A
1 MAy - Ppnsd _V{"TA
—m’2r+ﬂsr)l-(na+in5)xm+wn2+i -n5 XB!%
- j.‘/; - 33 ),2 vxp

terns

xm-

x.-

-1
. )
mzd(ar

&, - 8
& + K

Br) =

’i"e

A

[ Ik, -

x5 +n2n3x2
l - n
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A A
. DAy + Nongh,

-\’1 - niz

Now if Equations (13 - 1) are solved for Kpa 80d Ky,

-

:::5ij 1.(!115 1#-113 5}

ln2n

-1

5

(k)

(ps)

(p3)

+ t(bznj-b :‘/1 - n

5

s

(ns)f




! mations to them,

In order to eiuplify Equation (D6) we will consider only those terms
Since Bquations (62 - 83) indicate !

which are cubic or less in 3, or nj-

weeT

dx, dx3 PR A ! ;
T ad g are second order in n, or ng, Equations (66 - CT) for s ! i
1 1 ; "
N ! 3
and ).3 red’a\;ce to . de o) :
= o o o7
Xz <\ / l - nf c.xl ] ‘
A . nyny _ ixl 4 ‘
? =\ "l - n}3 &xy (28) o
But doth 62 and 4 are multiplied by an n, or n3 vherever they appear E -
in Equation (D6) , and hence, we need only consrider second order approxi- ; A

2 2 2

.2 2 a2 D tnyng 5 2 :

. e B m + = = +n (p9)
'iz x.) 1-n5 n2 3

L= -ae.nl (D 10)
|

Ineerting Equations (D7 - D 10) in Equation (D6) and regrouping,

dx -
-;,::2 (Fy. + 1w,) = - (;;—2 + 15‘-13-)1% + {n, - %) + 1(ny - ;:3:) (K -tvg,)

dx A , 1/2 :
"2 iy + X2 - nf) (- 1) (0 11) ,

b
Rewton's equation for motion in the plane may be uwritten in the !
Xo*3 )

vhere m is mase

'G is the Coriolis acceleration.*

L,

J
I . forn m('ié+ 125) =F, + ﬂjr - ing ~ ma, (D 12) i
}
|
!

»
An expression from ‘('; is given in Reference 5.
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If we change the irdependent varisble in Equation (D 12) from time to
N _

dim~naionless arclength p -g -’é-dt, and golve for the acceleration,
o

"+ ix" X, + 1x 8,d
X2 3 ,_("2u"‘3)3'+§_z(p2r+m5r) -15%-%- (p13)
mu u u :

d

Substituting in Equation (D 13) fiom E:;uation (D 11) and roting that
drag term in (D 11) differs from the % term in (D 13) by a fourth oréar
term, we can integrate Fquation (D 13) end obtain the folloving form

; . 1 ] (Dlh)
| (% + xy) 1;*3“‘&“‘36)_x2°;u5°+x2°;u5°p+sL-18,

[ 21/2
vhere 5, - 1S, = (JL-ivJFﬁ(l-nﬁ) ar dq
L
"z "z
3
od
IS
xx-nde § §u'zdrdq
i L _L
; “2 2z
E P
; 2 -2
: Xog +1Xyn =2 5 &, u dr dq

-2 -3

Sinecnsi‘i’-é:(ﬁ-f),
m!-fz-ﬁ,




nrwmir ey . » b

L% 3

1/2 "
(l-nsa) =‘-—]2-'-x132+. .
=1+§6_-’E)2+.... (D 15)

.-.1-;1:.‘62+.é'('ﬁ2'+&2)+. . e

If the assumed epicyciic solution for & were substituted in the third
term on the right side of Equation (D 15) a simple calculation would

show that the r'esultingexpression does not contein either a constant
term or terms in the difference freguencies. This term in Equetion (D 15)
will, therefore, be placed in our error expression. If & linear
dependence of the 1ift coefficient on 52 ig aseumed and fourth powers of

Kio 's are neglected,

f KA ) 2y a (® 16)
J, + J J ;. ar L

L [LO Le2 ' ]L :

-]

8, =

-

Pt ey

vhere J7 @)
M e Tl 2 N
Inserting the general expression for a domped epicycle for A in Equation(T 16)

and resroupins,
§ A ~ o2, M2
{[Lo Laz el 1(1 e + JLO + "1.52 6eza K2 © j""‘dq +EL
2 ‘ (o 17)

wherea ',‘10 +2K2°
2 o 2
B2 =g +Ky

q
g EI'E? B3 + (§)3, O +’£2)‘£i ax 4q
2
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Similarly,

1931

G -
o 2
Sy EF +JF?&el] Kl e
0 )
L
2

~ 51 18,
* EF + JFG,‘, bezj K, e ar dq + E, (n 18)
-

q

S Eer?’ Ep3 +év JF(‘X‘? +T2)'$.] dr dq
L

Z

4

Equettons (D 17 ~ D 18) may be used either for the analysis of the

results of prevent swerve nductionas or for the corstruction of & new

' sverve reduction. If thc eigat unknown epicycle sverve reductios is

H considered, Fquations (D 17 « D 18) without the error terms indicste
that the 1ift and Magnus force coefficients as ohbtained from a givea
mode of oscillation should be plotted sgainst the appropriat effective

yaV squared.*
It is intsresting to note that for a rapidly spinning model althcugh
only the swerve associsted with the slrv arm, Kz, .8 measursble, the . ;ﬁ:&"
2.

squared amplitude of the fsat arm hae twice a&s muc:: weight in the

calculstion of °eg2 as that of the slow arm. _
; ¥ e more modern IF sserve reduction may be applied to vi.. =sasurement i
‘ of non.iirear forces vhen the wodel {3 rapidly spinning. Ouly
i the slov arm makes s measursble coutributfon ard the coefficients

obtaiined from this reduction should be plotted sgainst qu .
: 66




A specia. purpoce swerve reduction may be constructed which will not
-lect zhe error terms. To <o thiz we vevrite Ecuations { D17 - D 18).
p

~ 2 2
Lt 0t T2 (K~ + Ky )}S
L
2

q
g Adr dq (0 19)
L
3

P q 2 m )
~ 1 o : ‘
* e § S(Kzo K, e " +Kg K e ) & dd + By
T "2
D a
2 A
Sp =V [7%4».1}.&2 (Ko +K205}S S Adr dq

.é.é (p 29)

q
14 14
2 2 2
g (K" Xe 1+x10 % Ydar ag * Ep
L
Z

I¢ estimates are male for JLO, anz, Jro and era, the last two terms on

the right sides of Equations (P19 - D 20) are known gunctions of p and

+ ix
may he subetracted from the measured :2—1———2 of Equation (D 1k, If

the modified Equstion (D 1%) In six wiknowns 18 f£itted bty leost squares
x, + ix

to the measured 2 5,'-, {ndividual round values of JL 47132-
Y]

{x 2 . x z)md.]’ +? (x 2,k 2)m be obtained. When these
1w * R0 r, * 2 10 20 Y ’

H values for different models of the same configurstion fired at the saoe

Mach number are plotted sgainst 1(102 4 )(2 02, the individual force

\ coefficients mey be obtained. Should they 4iffcr from the initisl guadses
the process can be {terated. This reluction han been coded for the
OGRIVAC snd 1s svailable for use.




ASTENDIX E: LARGE YAWING MOTION WLiA ALL MOY-LINEAR MOMENT3

In this Appeadix we now will apply our techniques 10 the

equation with non~linearities in all the moments, Only &

4.car dependeiuce of the moment coefficients on 62 will be considered.

; v
it -:- and H;‘ in Squation (20) are spproximated by - é (62)' and Ji.62(62)'

vespectively, that equation may be written in the following form:

e [EIO+H282+% (62)' - ﬁ] A

» 2 20 L. x 2
- [uo+u25 -JLag(b) 4 4U(T, + T, 8°) | K= 0

.

(E1)

-2
vhere £ = J, = J, + (3, - )
o= I, ~ °p, 2 g, - Ty,
» -2 1 -2
By=dp2- Jnaa”‘z ("naa’ "maz) -2 Jx.o’ ko JMAO]
* -2 *
g X +ky anz




ko — s 1

oy

»

. parts of these equations ueed be conaidered.’

Substituting Equation: (24) for a demped epicycle in Equation (E1) and
‘~ting the coefficient of Kle1 1 to zerg, we obtain the following C
—=vion. {Our basic assumption requires that Kia's which should be

in Equation (E2) t¢ replaced by midrange value xioz') 7

(E2)
(-a + 1¢;)2 + (Hy - 19)(- o +18)) - (M + u;oef) + 13(T, + T 5012‘)]

+ 5; E’Hoz + K202) (- + 1¢1) * l‘202(""2 + 1¢;)]

A similar equation can be derived from the coefficient of Kee . It
squares of xiO sre aiitted in the equstiomfor ( - ) + 1¢1) and
(- a, + 1¢2), the familiar relations for the linear case may be obtained:

7"{“¢é By = +a, (E3)
? ' ¢"" ¢' o
I°-¢l.¢2.alq2 To.a._l_...?_._._r_az"'l S
g+ 8

Since in the lincar case the equation: for v is unaffected by damping
and that for “0 has a very small term from the damping, we would expsct
the sddition of damping to have little effect on Equations /)2) and (93).
If ve make the simplifying assumption that this 1'9 the case, the real
part of Equation (E2) and its equivalent for K, e fwmld yleld very
slightly modified versious of Equation (92) end {G3) and only the imaginery

(x4)
ot 3T 0 T 0 1] 0,5 - ) [ - W

The precise effect of the damping is the addition of al(n - al) to
Bg. (91) and a,(H - “2) t0 Eq. (92). (See Eqs. 109-110). 3

6

)

SRt e 0 Swaes Wade b 20




C . g, + af
- L52(¢1 - ¢2)K202 * 7’1(“1K102 * “2‘(202) + (31"’2"?12'&)}(20 =0

(&5)

2-—

2" Ho¢; - V&, + V(T4 + T; °e22) - 5; EKIOZ * K202)¢; + K3.0295;]
. * | ' o p' + l
L2 (¢, - ¢1)“102 * ¢2(°’1K102 * °2K202) * @—2-5-5‘-2-@’*102 =9

The appearance of 3, 12 ir Equaetions (E4) and (E5) could have been predicted

 from the fact that ¥T is the imaginary part of the coefficient of A
vhile M 18 the real part of the same coefflicient. Thus for a Magnus force
vhich is a polynomial function of 82, the relations in Table I may be used
in the generalized forms of Equstions (E%) end (E5) in the same way that
they muy be used for a polynomisl static moment in generalized forms of
Eqs. (92) and (93).

7 the small geometric non-linearity terms are omitted, linear damping
moment ; are assumed, and the effect of the small non-linear 1lift terms is
neglected, Equations (E4) and (ES) assume the simple forms

“1 - KJI - ;(TO + T2 601‘) (26)
2’1"7
v s 2
- ¥(T T, 8
q?_‘odz "('o" 2 82 ) (ET)
2¢2'7

An examination of Bquations (92) and {93) shows that when the , *omctric non-
linedrity terma sre neglected, the frequencies deperd on the amplitudes
through ﬂutr corresponding effective squared yavs, °e12' Thus, we have
the important result that under these asssumptions the demping of & given
moda is related tc the amplitude of the total motion by means of its
effective square yaw, In other words, for fixed aserocynemic charscteristics
and spin, the damping axponents, ai, are functions of thei: 2 uz'l salons.
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If Equation (E4) is now subtracted from Equation (E5), the result
* solved for H, and simplified by use of Equation (o%)

. ¢' 2 - ¢' 2 . 2 - 2
B, + 5 B0 “Pho, o L Ko~ %0,
¢l = ¢2 ¢l - ¢2
(0, ~0) (K, 2K o0
+ “; Gf‘(’;' __:“)220 e (Klo2 + Kzoa) (e8)
1 2

) [, - oo, - 6 - ol
e LN rrer?

C Eliminating K, from Equations (Eb - E5) and simplifying by use of Equation (9k),

end ignoring all K,} terms, we obtain the following equation.

. » . K 2¢'2 - 2¢ 2
‘ To + T2 832 = Tra.nge + Hy (10 }2 K?g 2 ) (29)
. $ - %
t (B 2 ’ 2 ot .y
+u; 2,8, (o - (Ko - Koo ) 3 (K10¢1"xzo¢2)
W -k L2 g fy
“1¢:¢' + °‘z¢'1 1 K102""1 - 1‘202¢'2
. th'rrw-(——l-—v-) 1-(2)( : = W
fL+ 8% - %

Bl + %)
(B $)°(8; - #)

. The quite formidsble expressions for H range and Tran e differ

apprecisbly from the simple relations for no and T, of Equations (E3)
t only vhen the ysv is quite large.

% The subscript "range" denote the quentity whichthe range reduction
would get if only the geometric non-linearities vere nsonsidered.

7




J,., end J, are defined by the relations

s

The range values of J,, -
Y

following Equation (20}

2
W = Tis) =k,” |H -3 -T) (E 10)
H MA range 2 [range Lc ')O]

. .
J =k J. -7 (8 11)
T ge 1 [Lo ra.nge]

*
jons are used in Equations (E8 - E9) and H,, 32, Tor Tp

Ir theee relat
nitions from Equations (E1l) end (89},

and Mz are replaced by f.heir defd

and the J 8 converted to K s the following two equations for (I'C.H KMA)
range

and xqr may be obtained. (e 12)
* 9"’(202 - ¢'2KJ :
. 1 0
e (g Km)rwge g S, * ¥m 2 ( 5 - )

- x;,_. (K)(’t’L fo YKo - Koo )
¢1 - ¢2

*‘1-";32“‘2":.52*"5"::2"‘&"1.0

o 5"10 - Kby \
Xy K +Keo O * Ky 2B P ) (e 13)

* *
+b) Kot Kot P3ipet ™ R,

were & = - (@ - G)Ey? - K Py - BV

o =k 'Eas; - B % - (2F, - ¢'1m20"] 8} - #2)

-1

12




r

-

: - -1
21 0 2 R al v [
8y = - ky [}1 Koy = %y Ko | @) - 8,)

8, = (%)kza (K102 + l‘202)

[ A ] [} ) -2
b, = 3 (BN - e)Ky0° - Ky D) - 8,7

' t t ] J 1o ~1
EREN |Z‘°‘¢12 - 8K - (o - ¢12)K23 (8% - %)

-1

by = - X, “‘102 ¢'1& - Kpy ¢'22)(¢'12 - 8,9)

] ] 1] ] -1
by = - (%)kla (Klo2 g+ K202 VGRS Y

The terms in a, and b, in Equations (E 12 - E 13) are usually smsll
and can be neglected. (For those casea where these terms are important
the terms must be calculated® and subtracted from the range va.ues of
- and X,.) Equation {E 12) predicts a dependence or (K, - K,,)
Kg - K 08 K %z - At .

» »
on both &62 and K; 5 while Equation (E 13) predicts a dependence of Kp
# »B range
on both > and lql, 2
<)

»
Only three roomds of the 126 rounde ¢ the Army - Navy Spinner Rocket
Prograa requ.ced this calculation. For one of tt :;e, however, the
correction to - due to a, vas about JYh,of the uncbrrected
$oree Xz - K 2 M2

e st vt ——— .
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9.

10.

Murphy
(3une 1952).
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